Nonparametric Latent Feature Models for Link Prediction
نویسندگان
چکیده
As the availability and importance of relational data—such as the friendships summarized on a social networking website—increases, it becomes increasingly important to have good models for such data. The kinds of latent structure that have been considered for use in predicting links in such networks have been relatively limited. In particular, the machine learning community has focused on latent class models, adapting Bayesian nonparametric methods to jointly infer how many latent classes there are while learning which entities belong to each class. We pursue a similar approach with a richer kind of latent variable—latent features—using a Bayesian nonparametric approach to simultaneously infer the number of features at the same time we learn which entities have each feature. Our model combines these inferred features with known covariates in order to perform link prediction. We demonstrate that the greater expressiveness of this approach allows us to improve performance on three datasets.
منابع مشابه
Max-Margin Nonparametric Latent Feature Models for Link Prediction
Link prediction is a fundamental task in statistical network analysis. Recent advances have been made on learning flexible nonparametric Bayesian latent feature models for link prediction. In this paper, we present a max-margin learning method for such nonparametric latent feature relational models. Our approach attempts to unite the ideas of max-margin learning and Bayesian nonparametrics to d...
متن کاملLatent feature models for large-scale link prediction
*Correspondence: [email protected] Department of Computer Science & Technology, Center for Bio-Inspired Computing Research, Tsinghua National Lab for Information Science & Technology, State Key Lab of Intelligence Technology & System, Tsinghua University, 100084 Beijing, China Abstract Link prediction is one of the most fundamental tasks in statistical network analysis, for which latent fea...
متن کاملDiscriminative Nonparametric Latent Feature Relational Models with Data Augmentation
We present a discriminative nonparametric latent feature relational model (LFRM) for link prediction to automatically infer the dimensionality of latent features. Under the generic RegBayes (regularized Bayesian inference) framework, we handily incorporate the prediction loss with probabilistic inference of a Bayesian model; set distinct regularization parameters for different types of links to...
متن کاملThe Nonparametric Metadata Dependent Relational Model
We introduce the nonparametric metadata dependent relational (NMDR) model, a Bayesian nonparametric stochastic block model for network data. The NMDR allows the entities associated with each node to have mixed membership in an unbounded collection of latent communities. Learned regression models allow these memberships to depend on, and be predicted from, arbitrary node metadata. We develop eff...
متن کامل